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The crystal structure of decaborane has been determined from X.-ray diffraction data. Crystals
prepared by sublimation at room temperature, or above, show a high degree of polysynthetic
twinning, giving rise to diffuseness of reflections for which » and k are odd. In the untwinned
condition, the crystal is monoclinie, but pseudo-orthorhombic, and it is convenient to choose the
twofold axis in the ¢ direction. The space group is then C112/a~Cj,. With a,=14-45, b, =20-88,
¢, =5-68A., f=90-0° the cell contains 8 molecules of B, H,, and the calculated density is 0-96 g.cm.=3.

The individual crystals that make up the actual, highly twinned crystalline edifice are so short
in the b direction (a few unit translations) that it is convenient to consider the system as a partially
ordered crystal, the disordered state of which is described by & unit cell one-quarter the size of the
one mentioned above. The dimensions of this small cell-are ay =7-225, by =10-44, c;=>5-68 A., and it
contains 2B, H,; or ($B)y(3H)s. The disordered structure based on this cell explains all the sharp
spots observed—its space group is Pnnm—D}2

The solution of the structure resulted from & successful application of phase inequalities in ob-
taining an approximate projected structure (on (001)). The application of the inequalities is discussed
in some detail.

The refinement of parameters has been accomplished by means of Fourier methods, including
several three-dimensional syntheses. Hydrogen atoms are resolved, and all 14 of them in the
molecule have been located from the electron-density maps.

The molecule is required by the space group to have only a twofold axis but appears to have
two wmirror planes as well; it has the symmetry mm2. The boron atoms are at 10 of the vertices of
a somewhat distorted regular icosahedron, two neighboring vertices of which are unoccupied. The
resulting arrangement forms two regular pentagonal pyramids with a common base edge. The angle
between the base planes of those pyramids is 76°. Each of 10 hydrogen atoms is attached to a single
boron atom in the direction of a fivefold axis of the icosahedron. The remaining four hydrogens
each bridge two boron atoms. This structure is interpreted in terms of resonating single bonds, such as

used by Pauling in describing metallic binding.

Introduction

One of the foremost unsolved problems of modern
structural chemistry is that of the structures of the
boron hydrides. The increasing interest in these com-
pounds and in their peculiar properties, makes all the
more desirable, at this time, any definitive structural
information in this field. Most of the extensive literature
pertaining to the structures of boron hydrides has been,
perforce, speculative in character.

It is noteworthy, in this connection, that no recent
X -ray studies of these compounds have been reported,
despite the remarkable progress that has been made
in structure determinations using X-ray diffraction
effects. Altogether only three X-ray investigations
have appeared in the literature (Mark & Pohland, 1925;
Moller, 1931; Stock & Pohland, 1928). Apart from the
relative scarcity of material, this situation is due also to
the fact that only one member of this series of com-
pounds, decaborane, is solid at room temperature.
Moller (1931) was successful in obtaining good diffrac-
tion patterns from single crystals of decaborane, but he
was unable to deduce the structure. Furthermore, his
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findings led to the improbable conclusion that two
molecules of B, H,, are closely associated in the crystal.

Consequently, we deemed it highly important to
undertake a complete crystal-structure determination
for B, H,, when single crystals of this substance were
made available to us.

Preliminary experimental results

The crystals of decaborane used in this investigation,
and the physical data, were kindly provided for us by
Dr Arthur E. Newkirk and other members of the
Chemical Division of this laboratory. Clear, colorless
needles or columns of B,H,,, ranging in length from
0-5mm. to 3cm., were prepared by polymerization of
lower-molecular-weight boron hydrides. These crystals
were resublimed and then found to melt at 99-3°C. in
agreement with the reported melting-point (Stock &
Pohland, 1928).

Decaborane, unlike the other boron hydrides, is quite
stable in air at room temperature, with respect to both
oxidation and hydrolysis. However, its volatility pre-
sented a problem in obtaining satisfactory diffraction
patterns—unprotected crystals were found to disappear
in the X-ray beam during a short exposure. Enclosure
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- of a crystal in a glass capillary was unsatisfactory owing
to sublimation of the crystal and recrystallization
within the capillary. This problem was solved most
successfully, finally, by enclosing a crystal in a pro-
tective envelope of formvar film as described by Roth &
Harker (1948). Not only was the crystal then preserved
indefinitely in a fixed position, but also clear X-ray
diffraction photographs (with extremely small back-
ground scattering) could be obtained with relatively
short exposure times.

The preliminary investigations with X.rays soon
revealed the all-important fact, not mentioned by
Moller, that the crystals of decaborane are intimately
twinned on a micro-crystalline scale, as evidenced by
the diffuseness of certain reflections. On the other hand,
all our other findings were in complete agreement with
those of Méller, indicating that our crystals were the
same as his. Thus, Laue photographs, taken with Mo
and Cr radiations, showed orthorhombic symmetry, and
rotation photographs about each of the principal axes
gave the following unit-cell dimensions:

ay=14-45, b;=20-88, c¢,=568A,
The indexing of the reflections on the basis of this unit
cell led to the same systematic extinctions as reported
by Moller. The criteria were:

(1) Rkl present only for A+k=2n,

(2) AkO present only for h=2n, k=2n,

(3) ROl present only for 4k +1=2n,

(4) Okl present only for 3k +1=2n.

It is to be noted that conditions (3) and (4) are not
required by any space group.

Also, all the intensity data given in Méler’s article
(mainly for the prism reflections) were in excellent
agreement with our values. From the experimental
density of 0-94 g.cm.=3, we, too, decided that there are
8 molecules in the unit cell (calculated 7-93).

Our conclusion, then, would be identical with that of
Moller—that the space group is D3i-Cmma—were it not
for the significant feature that all reflections are diffuse
for which h and k are both odd. The nature of this diffuse-
ness is such as to give maximum intensity at the re-
ciprocal-lattice points but with a streaking only in the
b* direction. This is most strikingly illustrated in
rotation and oscillation photographs about the b axis,
as in Fig. 1. All crystals of decaborane which we have
examined (all at room temperature) have shown this
diffuseness to the same degree for those reflections with
k and k both odd. A logical explanation of both the
diffuseness, just mentioned, and the non-space-group
absences has led us to conclusions not in accord with
Méller’s.

Our first concern in this investigation was with the
physical basis of the diffuse reflections.

Our diffraction data were obtained principally from
four complete sets of oscillation photographs taken with
Co Ko radiation (filtered by iron foil)

(MCo Kay 5)=1-7902A.).
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The axes of oscillation and the range of oscillation per
film were:

a axis (15°); b axis (22:6°);

c axis (7-5°); (a+Db) axis (22-5°).
In each case the overlap was one-third of the angular
range. The full sphere of reflection was effectively
covered thereby. The crystals were needles ranging in
length from 0-5 to 1-0mm. and in thickness from 0-2 to
0-3mm.

The intensity of each reflection was estimated visually
by comparison with a scale of intensities from 1 to 100,
on an arbitrary basis. Since the exposure time, the
crystal size, and other variables were not completely
uniform, film factors were evaluated from comparisons
of intensities of reflections occurring on two or more
photographs. Having chosen one film as a standard, we
were then able to record the intensities of all reflections
on a comparable basis, by the application of the film
factors. The final values for the intensities obtained by
this process were judged to be precise to about +20 %.
Values of F3;,, (on an arbitrary scale) were then calcu-
lated from these intensities (I,4) by application of
the Lorentz and polarization factors (Internationale
Tabellen... (1935), vol. 2, p. 567). No correction was
made, nor deemed necessary, for absorption.

In the case of the diffuse reflections, the maximum
intensity at the reciprocal-lattice point was recorded for
each such reflection.

The order—-disorder phenomenon

Considering the reciprocal-lattice representation of the
diffraction effects (Fig. 3), the rod-like streaks in the b*
direction clearly indicate a failing in the periodicity of
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Fig. 3. Schematic reciprocal-lattice layer, illustrating diffuse
streaking in the b* direction through lattice points for which
k and k are both odd.

atomic arrangement in the b directions of the crystal.
The very special nature of the streaking—only through
gelect points (& and & both odd)—suggests further that
there is no gross defect of structure such as irregularity
in interplanar spacings. Instead, the diffuse streaking
appears to result from a variation along the b direction

28
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Fig. 1. Rotating-crystal photograph of B, H,, taken with Co
unfiltered radiation. Rotation axis is b. Note the streaking in
the b* direction for reflections on odd layers,

Fig. 2. Optical projection p, (x’, ') showing the
projected boron framework of the molecule.

PraTe 15

[To face p. 437
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in the periodicity of the orientation of molecules in the
crystal.

The exact nature of the irregularities of structure
could not be elucidated at this stage, of course, with no
knowledge of the ideal structure. However, from these
considerations of the diffraction effects, it was found
convenient to regard the problem as a special type of
order—disorder phenomenon. At room temperatures,
then, decaborane is partially disordered. Since it was
not possible to obtain a crystal with complete order, it
was decided to attempt first the solution of the com-
pletely disordered structure, from which only the sharp
reflections would be obtained. In principle, this latter
situation could be a physical reality at more elevated
temperatures.

The space groups of decaborane

From the data already given and the recognition of the
order-disorder phenomena, it was possible to obtain the
true space group, first for the disordered crystal, and
then for the one with complete order.

Reviewing, in the light of the new findings, the criteria
(p- 437) for the presence of spectra, we see that the only
information that can be deduced from them alone is that
the cell of the ordered structure is C-centered (criterion
(1)) and that an a glide (perpendicular to ¢) is present
(eriterion (2)). We can summarize this in the symbols
C - —a, the dashes implying that the proper symmetries
here are unknown.

For the description of the disordered structure, a cell
only one-quarter the volume of that of the ordered one
is necessary, resulting from halving both the ¢, and b, of
the latter. The criteria for the occurrence of the spectra,
(sharp reflections only) then become:

R'E'l" present for all cases,
k'E'0 present for all cases,
k'Ol present only for &' +1'=2n,
0%'l" present only for &' 4+1' =2n,

where b’ =1}h, k' =1k, I' =1, hkl being the indices for the
large cell. The crystal system is orthorhombic and the
space group from these criteria is either Pnn or Pnnm.
Since an a glide (perpendicular to ¢) must be present in
the large ordered cell, a mirror plane perpendicular to ¢
is called for in the small cell. This follows from the
principles for obtaining derivative structures, as given
by Buerger (1947). The space group for the disordered
structure is then Pnnm.

Further application of the same principles of deri-
vative structures (Buerger, 1947) allows the determina-
tion of the space group for the ordered structure. In
order to obtain the C-centered cell of twice the dimen-
sions for a, and b, from the small cell with space group
Pnnm, we find that the space group must be C112/a,
a subgroup of C'mma, the one reported by Méller. The
ordered structure is then monoclinic, and with mono-
clinic axes in the conventional orientation the descrip-
tion would be P2/c-C$%,. For convenience, however, we
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shall retain the orthorhombic axes for the ordered
structure.

Accordingly, the appropriate descriptions for the two
cases are:

Ordered structure Disordered structure

Monoclinic Orthorhombic

ay=14-45A. ag=T225A.

b,=20-88A. bo=10-44 A,

c,=068A. c,=5"68A.

Space group C112/a~C%, Space group Pnnm-D3:
= SBmHm Z=2 (%B)zu(%H)zs

The designation, Z=2 (}B),o(3H),s, requires some
explanation. Inthe small cell of the disordered structure
there is the equivalent of two molecules of B, ;H,, (as
determined from the density), but with twice the

" number of atomic positions required for two molecules.

For complete disorder, the molecule occupies with
equal probability either one set of positions, or another
set related to the first by a mirror plane perpendicular
to ¢. For purposes of analyzing the diffraction data, it is
convenient to express this situation by considering 1B
(half the scattering factor of a boron atom) and } H to be
at each of the atomic positions provided by the space
group Prnm. Thus, for each 1 B at x,, z, there will be
4B at x,y,Z. A special feature to note is that the prin-
cipal projections, on the (100), (010) and (001) faces, are
identical for both the ordered and the disordered
structures.

Solution of the disordered structure

In the absence of prior definite evidence for the struc-
ture of the decaborane molecule and of the structural
principles for the boron hydrides, it seemed especially
desirable to avoid a process of trial and error with the
many structures that have been postulated. Accord-
ingly, our first attempts to obtain the approximate
structure were mainly through the use of Patterson and
Patterson—-Harker functions. Numerous such functions
were evaluated and considerable effort was expended in
their interpretation, but without success. A character-
istic feature of these functions was the presence of many
peaks, all of approximately the same height and often
with poorresolution. In consideration of the many inter-
atomic vectors that could be expected for a molecule of
B,,H,,, this situation is not too surprising. The problem
of interpretation was considerably more difficult than
usual, also, because of the lack of a stereochemical basis
for the structure of the molecule.

A large number of tests were made of postulated
structures, not only as to their compatibility with the
Patterson and Patterson-Harker functions, but on a
trial-and-error basis of agreement between observed
and calculated intensities. These latter attempts were
without success, too, but it did appear unlikely to us
that any of the structures in the literature was valid.

The first clue to the correct approximate structure
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resulted from a direct use of Fourier series for a pro-
jection on the (001) face, after the signs of a sufficient
number of F,,’s were obtained through the use of
phase-inequality relationships (Harker & Kasper,
1948; Gillis, 1948a, b).

Application of the inequality relationships

It is essential in the method of inequalities that the
intensities be expressed in absolute units, i.e. that the
F’s be given as numbers of electrons (Harker & Kasper,
1948). We had not made any experimental measure-
ments of absolute intensity, and relied instead on
analytical methods for establishing an approximately
‘absolute’ scale.

One plausible method depends on the investigation
of minima in the three-dimensional Patterson function.
The argument is that the lowest minimum in Patterson
space, occurring in a region which does not contain inter-
atomic vectors, can be taken to be of value zero (when
all F},,, including F3y,, are in absolute units). For such
a point (%, vy, w,), then

P(uy, vy, we) =0=Fioo+ 3 F2; cos 2m(huy + kvy + lw,).
il

Accordingly, if F;2, represents the FZ,; value on an
arbitrary scale, and C is a constant,

O F}2, cos 2m(hug+ kvy+lwy) = — F2y, .
hkl

The constant C can thus be evaluated and then used to
convert the F2 to an ‘absolute’ basis (F3,, =CF;2,).

In the first application of the inequality relations,
following their discovery, the scheme just described was
used for expressing the F’s in terms of electrons in
order to obtain the quantities* U, ;= F,,/Zf and Ujy,
(whe/fe Z is the total number of electrons in the unit cell

and fis the ‘unitary atomic scattering factor’ (Harker &
Kasper, 1948)). With these values of U, and U2, about
one-third of the signs of F,,’s were at first obtained
from the inequalities, but contradictions were then en-
countered, casting doubt on the process. It was realized
then that the method of placing the intensities on an
absolute basis was not satisfactory. For one thing, there
was positive indication of the presence of a moderately
large temperature factor but there was no means of
allowing for it in the scheme. Consequently, as was
found later, the magnitudes of U,,;; were generally too
large for small values of sin§/A, and conversely.
Subsequently a sufficiently reliable method of placing
the intensities on an absolute basis was worked out by
one of us (Harker, 1948). (Analmost identical treatment
had been given by Wilson (1942), but was not known to
us.) The substance of the method is that the mean value
of U%,, averaged over a large number of reflections,

* Fortypographical reasons, we are adopting the change made
by Gillis (1948b) in the symbol for the ‘unitary structure
factor’, represented previously (Harker & Kasper, 1948;
Gillis, 1948a) by Fy,,.
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— . N
Ui, is given by UZ,= 3 n?, where n;=2,/Z, the

J_
fraction of the electrons in the unit cell which belongs to
the jth atom. If U,,, represents the quantity U com-
puted with an arbitrary scale of intensities, then

N
Upa=KU,, and U2, =K? Y, n. In the absence of
j=1

thermal motion, K is a constant; otherwise K is a
function of sin §/A and may be expressed as

K=Kjexp[—B(sin /A)?].

The variation of K with sinf/A can be obtained by
taking narrow ranges of sinf/A and performing the
separate averages for reflections in each of these ranges.
The values of U,,, for B,,H,, were then recomputed in
this manner. Serious discrepancies were not encountered
in the sign-determination process with this set of values.

The process of the sign determinations will be re-
viewed now in some detail. In Table 1 are listed the
magnitudes of U, the signs of which it was desired to
ascertain. (In this section, the indices are those appro-
priate to the small cell, i.e. 2'k'l'. For typographical
reasons the primes are omitted here.) Three separate
groupings are made, since very frequently these groups
function independently in the inequality relations.
Table 2 contains both | Uy, | and Uj,, for those ‘re-
flections’ for which | Uy, | >0-30, arranged in order of
decreasing magnitude of Ujy,. (Also, included at
the end of the table are a few reflections for which
| Upge| €0-30, but which will be used in subsequent
relations.)

The simplest inequality relations are those utilizing
one symmetry element. Of the several separate ele-
ments of symmetry associated with the space group
Prnm, only the following were found to yield a definite
sign determination:

m at z=0

205 <{1+ Ugpa}s (1)
nat y=%

203 {1+ (= 1)+ U g1 (2)

For these relations to.yield a sign determination it is
necessary that the magnitude of the U on the right-hand
side exceed that of 1—-2U%,,. Accordingly, the com-
parison of these two terms is made in Table 3 with the
resulting conclusion. Following Gillis (1948b), the sign
of U, will be indicated by the symbol S};,;, which is
either +1 or —1.

The last two entries in Table 3, while not establishing
a sign, provide an illustration of the limitations which
may be placed on an unobservable U, when Akl
correspond to a reciprocal-lattice point beyond the
sphere of reflection. Such information is often useful in
allowing sign determinations with other inequalities,
and frequent application of it will be made subsequently.

We next examine relations containing two separate

28-2
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Table 1. Values of | Upo|

hk0 | Upko | hkO | Unmo | hk0 | Unio |
800 042 — 710 0-63— 670 0-59 (—)*
060 041 — 570 0-53— 450 047+
080 0:39— 510 0-42 (+)* 290 0-47 —
400 0-32+ 550 0-35— 580 0-46 —
420 - 031+ 530 0-34+ 180 0-45—
660 ©029— 190 0-30— 160 0-43 —
040 028 — 150 0-28 — 340 0-40+
480 0-27— 330 ’ 022 — 720 0-40+
220 0-27— 310 0:20— 360 0-38+
460 ) 0-27— 110 0-19+ 740 0-35+
0.10.0 0-26— 370 015+ 270 0-31—
020 0-26 + 130 0-14+ 490 0-26 —
260 024 + 350 0-12+ 470 0-25+
280 0-21+ 750 0114 380 0254
240 0-21— 170 0 140 0-24 —
200 0:-19— 730 0 230 0-21+
600 0-10 390 0 630 0-20
620 0 590 0 540 0-20
440 0 1.11.0 0 410 0-19
640 0 430 0-17
2.10.0 0 520 0-15
4.10.0 0 810 0-14
250 0114
120 0-10
210 0-09+
320 0-04
610 0
650 0
560 0
1.10.0 0
3.10.0 0
2.11.0 0

* Assumed, see p. 443.

Table 2. | Uy | and Ul for reflections with | Uy, | > 0-30%

Rl | Upga | U 12 | Upa | Ui
710 0-63 0-40 351 0-37 0-14
701 T 061 0-37 134 0-36 0:13
670 0-59 0-35 352 0-36 013
544 0-58 0-34 324 . 0-36 0-13
206 0-56 0-31 501 0-36 0-13
570 0-53 0-28 461 0-35 0-12
006 0-52 0-27 004 0-35 0-12
226 0-52 0:27 522 0-35 0-12
643 0-52 0-27 550 0-35° 0-12
450 0-47 0:22 293 0-35 0-12
423 0-47 0-22 740 0-35 0-12
290 0-47 0-22 443 0:34 0-12
105 046 0-21 - 830 0-34 0-12
580 0-46 0-21 133 o 0-34 012
180 . . 0-45 0:20 . 322 0-34 0-12
171 i 0-45 0-20 412 0-33 0-11
561 0-44 0-19 172 0-33 0-11
015 0-43 0-19 521 0-33 0-11
- 160 043 0-19 073 0-33 0-11
510 0-42 018 234 0-33 0-11
144 0-42 0-18 400 0-32 0-11
281 0-42 0-18 262 0-32 011
800 0-42. 0-18 553 0-32 0-11
060 041 . 0-17 333 0-32 0-11
340 0-40 0-16 313 0-32 011
720 0:40 - 0-16 062 0-32 011
080 0-39 0-15 270 0-31 . 0-10
432 0-39 015 124 0-31 0-10
360 0-38 0-14 420 0-31 0-10
. 204 0:38 0-14 153 0-30 0-09
033 0-38 0-14 :
044 0-37 0-14 : 002 0-04 0-002
202 0-11 0-001
0.10.2 0 0
604 0-26 0-068
* Also included are & fow reflections for which | U,,;,; 1<0-30.
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U’s, corresponding to combinations of two symmetry
elements. These are:

nat x=4%, mat 2=0

4U5 {1+ (=14 Uy, 0 o3 {1+ Ugoa}s (3)
7 at y=;;, matz=0
Upia {1+ (= 1" U 1,031 + Ug,o,} (4)

natx=%} naty=%
AU {1+ (=11 Uy, 0 3 {1+ (= DUy g0}
(5)

" Table 3. Results obtained from relations (1) and (2)

Relation kil 1-2U%,, |U| Conclusion
1 643 0-46 052 Sup=+1
2 544 032 0-39 = — 1
2 710 0-20 026  Sigp=+1
2 570 0-44 — Uyorgn> —0-44
2 670 0-30 — Usao< +0-30

Some of the results obtained with these relations are
summarized in Table 4. The value of 4UZ,, is compared
with that obtained for the right-hand side of the in-
equality for each of the four combinations of signs on
the U’s. These latter values are given in the four
columns of Table 4 that are headed by a sign combina-
tion. Always, the first sign in the column heading refers
to the first of the U’s on the right-hand side of the in-
equality as written above.

To illustrate by example, the first entry of Table 4
(relation (5)) deals with the specific inequality,
4023 < (1 —=Uggy) (1 —Uyyy) for which 4U%,; is 0-88.
Assuming the signs of both Uggy and Uy, to be +, one
obtains 0-42 for the right side; assuming Ugy, to be +
and Uy, to be —, the value obtained is 0-74; etc. In
order that the inequality be not violated, Uy, cannot
then be +
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The starred entries of Table 4 are cases where one of
the U’s is unknown, but where information as to sign
can be obtained, notwithstanding. Here we assign the
unknown U the value +1, —1 or 0, according to which
makes the magnitude of the right side of the relation the
largest. Sometimes, as for the first starred entry, the
sign of an ‘unobserved’ U can be fixed (S;,40=+1).

Limits on ‘unobserved’ U’s can always be placed by
these relations, and this is illustrated by Table 4 (a).
Thus, using U%,, and relation (3), together with the
previously ascertained information that Syp=+1, we
obtain that U,,,0> +0-42. This can be used with U,
(relation (5)) to establish that Sy 0= —1.

We note here a contradiction regarding the sign of
Ugyp (from Table 4, Spo=+1). This was the most
serious error encountered. Further relations, to be dis-
cussed later, favored Sy0= — 1, and this value was used
finally. It is quite important, therefore, that in the
early stages, several independent sign determinations
for a given U should be made, if possible.

For each of the relations (3), (4) or (5) with two
symmetry elements, there is a companion relation ob-
tained by a different application of Cauchy’s inequality
(Harker & Kasper, 1948). Thus, corresponding to
relation (5) we have

U <{1+ (=144 Uy 00+ Up ao) + Usn2ico)-

Applying (6) then to hkl=134, for which 4U%,,=0-53,
we have :

0-53 < {1+ S309(019) + Spgo(0-41) + Syg0(0-24)}.
Since Spg9= —1 (Table 4),
0:53 <{0-59 + S590(0-19) + 8 p50(0-24)}.
We then conclude that S,g, and S,q, are not both —1.

Once a number of signs have been made available, it
is then feasible to try the more complicated relations

Table 4. Results obtained from relations (3), (4) and ()

Relation Rkl 402, + + +— —+ - — Conclusion
5 423 0-88 0-42 0-74 1-02 1-81 Sgoo=—1
3 423 0-88 0-89 0-28 215 0-68 Sose=+1
4 423 0-88 1-10 035 1-04 0-64 Soes= +1
5 450 0-88 0-43 073 1-05 1-79 so=—1
5 226 1-08 1-69 0-96 0-87 0-49 Sao=+1 (Seo=+1)
*5 710 1-60 252 1-48 1-26 074 Soro=+1, Spqan=+1
*5 544 1-36 0-61 1-39 1-22 2-78 080 = —
5 234 0-44 0-40 0-96 0-78 1-87 If Sgop= + 1, Sogo= — 1
*3 643 1-08 1-52 0-48 3-04 0-96 Spos= +1
4 643 1-08 0-92 0-29 212 0-67 Soee= +1, Soge= —1
3 281 072 0-71 0-65 1-38 1-27 If Sipo= + 1, Spa= +1
* One U unknown,
Table 4 (a). Limits on ‘unobserved’ U’s
Relation
e A N
3 5 3 5
hicl 701 720 643 544
4UE, 1-48 0-64 1-08 1:36
++ l Uisoo]) (1 04 0-43 (1—| Uso0 |) (1:52) -
+ - 1400 0-77 - (1—] Upo0 ) (1:39)
-+ — (1+] Usa, |) (1:52) —
- - - — (1+| Ui I) (1-39)
Conelusion Uspp0= +0-42 Soge=—1 Ussoo< +0-29 Ui000<0-05
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obtained from the structure-factor equation of the space
group. For space group Pnnm, the unitary structure
factor is either

W
Unu=8 X n;cos 2mhax; cos 2mky; cos 2nlz;
. i=1
if h+4k+1is even,

N
or  Upy=—8 3 n;sin2aha,sin 2nky; cos 2nlz;
i=1

if A+ k+1is odd.
Depending on the choice of a, in Cauchy’s inequality,
N 2 N N
‘ > a;b; <( 2 |a,-|2)(2, [b,-]z),
ji=1 j=1 j=1
we can obtain the following three inequalities:
8Uka <{1+Ugou}
X {14+ Usn oo+ (= 1)+ (U 0.0+ Ugar0)}s (7)
UG <{L+(—=1)"*1T . o}
X {1+ Ugggy + (= 12+ (Ugp 0.9+ Uspoo)},  (8)
UL <{1+(— 1)+ 417, , 3
X {1+ Ugoer + (= 1)** (U or0+ Ug g} (9)

For purposes of brevity we shall not discuss the
application of these relations in detail. If the signs
already determined and the magnitudes given in
Tables 1 and 2 are inserted in the pertinent relations,
the results expressed in Table 5 are obtained.
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Tt is convenient at this point to summarize the signs
already determined. They are:

hkl 8 hkl N Rkl S
200 -1 060 -1 420 +1
400 +1 080 -1 260 +1
800 -1 0100 -1 202 -1
020 +1 002 +1 604 +1
040 -1 004 +1

006 +1

So far the relations utilized have contained only U’s
for which Akl are all even. In order to get sign informa-
tion for U,,,’s where A, k are not both even, it is neces-
sary to make use of ‘addition-subtraction’ relations,
ie. relations where two U’s are added or subtracted
before the application of Cauchy’s inequality. The
simplest such relation is

(Ut Upier)* < (Lt Upyr, e, 1ar)

Xt Upp, g-r, 1) (10)
Extensive use of (10) was made by Gillis (19485) in the
application of inequalities for oxalic acid dihydrate, and
we shall follow his scheme of expressing the results.
These are given in Table 6. The symbol H stands
for hkl, H' for 'RV, H+H' for h+k. k+k' I+, ete.

* It is to be noted that from the structure factors,

Usko=Urzo=Usro=Uss, if h+kis even,

but that

Upko=—Upto= — Usro=Uszp» if A+ is odd.

Table 5. Results obtained from relations (7), (8) and (9)

Relation hlcl 8U%, Result Conclusion
9 351 1-09 086 if Sp00=+1 Sot00=—1
8 352 1-05 0-70 if Sgpy= — 1 Sopg=+1
088 if Sgoq= —1 Seoq= +1
7 216 0-38 022 if Spo= — 1 Sygo=+1
7 132 0-34 0:22 if S, and Sy both—1 Sa00 80d Sy not both—1
8 171 1-62 096 if Syop= + 1 200= —
L12if Sppe=+1 Sypp=—1
Table 6. Results obtained from relation (11)
H H’ H+H' H-H’ + + + - -+ -— Conclusion
006 200 206 206 0-51<2-43 — 0-19 S206=S1200-Sons
=(-1) (+1)=-1
206 020 226 296 0-67<2-31 — 0-23 106 =S205- Sozo
=(-1) (+1)=—1
006 220 226 226 0-63<2:31 — 0-23 Sa26 =006 -Saz0
—1=(+1) S
Spa=—1
060 510 570 550 0-69<2-06 0-99 0-64 0-31 S70="%10-Sos0
220 450 670 230 0-55< 1'9]: 1-26 0-50 0-33 S::z; 4505-];%220
160 510 670 450 0-73<0-84 9.34 0-22 0-61 Saro =800 Ss10
710 670  13.8.0% 160 149<1-14 2-86 114 2-86 160= —S110-Ser0
710 450  11.6.0% 340 1-22<1-18 280 118 2-80 200= —S110- S350
710 290  9.10.0% 580 1-22<1-08 2.92 1-08 2:92 s50= —S710- 200
710 180 890% 670 118<0-82 318 0-82 318 S70=—S110-Syz0
710 360 10.7.0% 450 1-03<1:06 2-94 1-06 2-94 S450= —S710-S3s0 Probably
040 510 550 530 0-49<1-81 0-89 | 0-87 0-43 Sinece Syyp= —1,
Ss10 =" 530 =S50 not allowed
020 550 570 530 0:37<2:05 1-01 0-63 0-31 Since Syy0=+1,

8570 ==S530= — S35, not allowed

* Unobserved reflections which are given the values 0, +1 or —1, according as which makes the right-hand term of the

inequality the largest.



J. S. KASPER, C. M. LUCHT AND D. HARKER

In the next to last column, the quantity (| Uz |+ | Ug-|)?
is first given, then the four numbers for

A+ Ugig ) A+ Up—g'|);

A+ Ugsg ) A= | U |);

A—|Ugsr ) A+ | Ug_a|);

A=|Ugser A= Ug-z s
always in that order.

Relation (10) can be useful also when applied to U’s
for which the indices are all even, in which case it is
possible to obtain a definite sign determination. Thus,
the first three entries of Table 6 are for such a situation,
and from them we have S,g5=S306=2_830=—1. On the
other hand, where inequality (10) is applied to U’s
containing odd indices, relations only between the re-
spective signs (S) can be obtained, such as Sg0= —Sgi,-
If an assumption is made as to the sign of one such U,
then the signs for an entire group of U’s are available.
This assumption corresponds to a choice of origin
among the several possible locations in the unit cell, and
is, therefore, quite arbitrary. For the particular
problem at hand, we are allowed two choices of sign for
the U,ys—one for a Uy, with &,k both odd, and
another choice for a U, with either % odd, k even, or
h even, k odd.

We first make the choice Sz9= +1. The results of
Table 6 then can be made to yield

S520=S8710=8s50= — 13
Ss7o=S160:‘9180= —S4so= —8ag0=— Ss605
Ss50="=S290-

There remains the other arbitrary choice of sign for
one of the U, with one of %,k odd. Choosing Sg;o= —1,
we have

Se20= 5180 =S 180 = —8450= —S300= —S350=— 1
and Ssg0="=_390-

We turn now to more specialized relations. Limiting
ourselves to those U,y,’s for which 2+ £ is even (and for
which, therefore,

N
Upro=8 Y, n; cos 2mha; cos 2mky,),
i=1
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if two such U’s with a common index are added or sub-
tracted before the application of Cauchy’s inequality,
a variety of new relations may be derived. Of these we
shall find use for the following:

2(Unrot Unio)* < {1+ Uparo = (Unswo0t Unsnznol}
x{12 Up 00
2(Unko £ Unno)*<{1+ Ugono}
X {1+ ¥ Uanoot Usno0) £ (Uniwoot Un-woo} (12)
2(Unio = Uneo)* {1+ Usno0}
X {14+ Uosu0t Uoar0) £ (Uorrwot Ugiro)}- (13)

Table 7 summarizes the results obtained from (11),
(12) and (13). In each case H represents the indices of a
U whose sign is known, and H’ those of a U of unknown
sign. Generally, at least one of the U’s on the right-hand
side of inequalities (11), (12) and (13) corresponds to an
‘unobserved reflection’, and for which information
limiting its sign and magnitude is necessary. The infor-
mation of this type used in each specific case is given in
the last column, and the manner in which it was ob-
tained is indicated at the bottom of Table 7.

Relations analogous to (11), (12) and (13) can be
derived if the two Ujy’s that are added or subtracted
are both with 2+ & odd

3N
(for which U, ;,= —8 X, n;sin 2rhx; sin 2nky;).
j=1
We shall now utilize five such relations. They are:

2(Unio = Uno)® <{1 = Upjaro}

% {1=3(Uano0t Uar,00) F (Un-r.00— Un-no0lhs (14)
2(Upo+ Upio)* <{1 = Uspno,0}

x {1 =8 Usan0— Uoawo) F (Ugrrwo— Uoie—ro)}r (15)
2(Unro— Unwo)* < {1+ Ug a0}

(11)

x{(1=Usnoo—UVor-rot Ut i—ie.0)}s (16)
2(Unro+ Unwo)* <{L = Up r1w0}

x{(1 = Uanp0+Ug-ro— Usni—r0)}: (17)
2(U ko + Unied)? {1 = Usnoo— Uoerrrnt Ushrro}

% {(L+ Ug w0} (18)

Table 7. Results obtained from relations (11)—(13)

Relation H H’ Result Conclusion Special information used
44036 if Sypp= — 1 Saso=+1 Uso.o< +0-05
12 550 350 0-44< 036 if Sys0 450 woss +00
13 550 530 0-95<0-56 if Sgg0= —1 Sgpo= +1 .,
12 510 310 0-77< 059 if Syro= + 1 o= —1 "
12 530 330 0-63 <028 if Sage= +1 Sag=—1 .
12 530 130 0-46< 0-42 if Spag= —1 Soo= 41 .
12 570 370 0-92< 0-62 if Sarg= —1 Sooo=+1 Usnoo< +0-05
Upaa0< +0-32
12 710 110 1-35<1-15 if Spo=—1 Spe=+1 Ujsoo< +0:66
13 110 190 0-48<0-28 if Spo=+1 o= — Upneo< —0-29
11 550 150 0-79< 078 if Sheg= +1 o= — Unino> —0-32
probably
13 710 750 1-09< 0-62 if Spgp= —1 Spso=+1 —
Relation Special information Conclusion
5 4U%;; =081 < (1 — Uy (1— U400 Upra0< +0-32
5 4U%p=0-88<(1—Ujgo) (1= Uo,16.0) Ugis0s — 029
5 4U24,=048< (1= Uyg0,0) (1— Ugso) Ujg00< +0:66
6 4U%55=0-52< (14 Ugoo+ Ug00t+ Us,100) Uga002 —0:32
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It is to be noted that for the last five entries of
Table 8, which summarizes the results from the use of
the relations above, the difference of the two values in
the inequality is well within the error to be expected for
the method of inequalities. Lacking stronger criteria,
we accept the signs indicated as being more probable
than their opposites, especially since, in the relations
used, the most adverse value for an ‘unobserved’ U has
been employed. Generally, more than one such weak
inequality can be obtained for the reflections in question,
somewhat in support of the probability argument.

There remain a few U’s with even indices whose signs
are still unknown. We are in a position now to use more
complicated relations for this purpose than previously,
since a good number of signs of U’s with odd indices
have been established. We shall give only one such
relation, derivable from the structure factor

N
Urro=8 X n;cos2mhx; cos2mky;, h+k even,
=1

4 Unro £ Unio)? < @2+ Ugngo+ Upano+ Usn,ane
+ Usw,or.0) £ 2(Unsw g0t Unami—reo

+ Up—w ot Un—wp—r.0)- (19)
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The information obtained from the use of (19) is
given in Table 9, along with the pertinent data.

For practical purposes, a convenient stopping point
was now reached. A further search for signs which had
not already been determined appeared to be a lengthy
and complicated process, and in general would give no
new result. Also, it seemed likely that sufficient signs
were available now to proceed to a Fourier synthesis.
The summary of the information obtained from the
inequalities as to signs of Up,,’s is included in Table 1.
Ultimately, three of these, namely, S30, Ssg0s Sa0s
were found to be wrong. However, two of these, S;5,
and S,,,, changed sign only in the latter stages of refine-
ment, when it was found necessary to include hydrogen
parameters. In addition, we have also established a few
signs for other than U,;y’s. Thus, Sgpe= +1, Sgps= +1,
Sogs=+1, Sgoa=—1, Sgog=+1, Sppe=—1, Sppe=—1.

It should be mentioned that we have not given here
a complete résumé of all the numerous trials with the
many inequalities provided by the space group Prnnm.
It has been our purpose to indicate as concisely as
possible the method of operation with the inequalities,
and to give at least one example of sign determination
for each Uy, whose sign was believed to be established.

Table 8. Results obtained from relations (14)—(18)

Relation H H’ Result Conclusion Special information needed
14 180 580 1:66<1-16 if Sy5o=+1 Sgo=—1 Uso,0.0=0-21
200 — 580 =200
14 340 740 1-13<0-79 if Spp= —1 Soio=-+1 Usgo.0 +0-42 (Table 4 (a))
Uso,00< +0-05 (Table 4 (a))
15 740 720 1:183<0:839 if Spy0=—1 Spee=+1 Ui4,0.0= +0:42 (Table 4 (a))
14 670 270 1-62<0-60 if Syo=+1 Sgzo=—1 Up140=0 (Table 4)
14 180 380 0-98<0-85 if Sygo=—1 Sggo=+1 Ugye0= —0-33
16 160 140 0-80.< 049 if S, 0= + 1 o=—1 —
15- 290 230 0:93 <090 if Sgqo=—1 Spgo=+1 Up1s.0= —0-55
probably Ug120= —0-25
15 290 210 0-65<0:69 if Syo=—1 (Saro=—1) Ug1s0= —0-55
probably
10 710 470 0:77<0:79 if Sypo=—1 (Sgro=+1) Ups0< +0-29
probably
17 450 490 1-06 < 1-04 if Sygo=+1 0= —1 Up140=0 (Table 4)
probably Ugp= +0:10
18 290 250 0:67<0:64 if Sy5o=—1 Spso=+1 Uy,14.0=0 (Table 4)
probably Usra0<+021
Relation Special information Conclusion
5 4U30=046 < (14 Ujp,0,0) (1+ Uigp) Usoo0= —0-21
10 (Uoa00+ Ugs0)* < (14 Up,16,0)? U605 —0-33
5 4U§90_= 0-36 < (1+ Usgpp) (14 Uy,s.0) Ugas0= —0-55
4 4U8s1=0-78< (14 Uy 10,0) (1+ Upyy) Upp0= —0-25
10 (Usm - Ulsw)2 <(1-—- Uu,s,o) (1- Umn) Uu,a,o < +0-29
6 4U%00=0-40< (1 + Ugoo+ Upan+ Usso) Uggo= +0-10
10 (Usso— Uz0)* < (1= U gaa0) (1= Uso) Up40< +0-21
Table 9. Results obtained from relation (19)
Relation H H Result Conclusion Special information used
19 150 330 1:00<0-65 if Sygo=—1 Spge=+1 —
19 400 080 2:01<<0-80 if Sy50=+1 o= —1 Upi6.0<0
19 400 060 2:13<1-74 if Sygo=+1 0= —1 Ug120< +0-37
10 710 660 0-87<0:60 if Sggo=+1 Seeo=—1 Uyg50= +0:40
19 330 110 1-:07<0-69 if Sppp= +1 Sa=—1 —
Relation Special information Conclusion
5 4U%g;=0-70< (1 — Uygp) (1 Up,16,0) Up160<0
5 4U%g0=0-75< (1~ Uyyo) (1= Up,1a,0) Upp0< +0-37

10 (Ugro+ Uggo)® < (14 Uys 5,0) (14 Upgo)

U502 +0:40
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The projection on (001)
The signs for most of the U,,,’s having now been pro-
vided, the direct Fourier synthesis of the projection on
the (001) face was attempted. Since it could be antici-
pated that several trial syntheses would be required
because not all the signs were known, it was especially
desirable to have a rapid means of obtaining electron-
density maps. The optical scheme developed by
Huggins (1941) of the Eastman-Kodak Co. was found to

~05 -03 -02
T
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crank. This device can be inserted in a photographic
enlarger, and the time of exposure regulated by an
automatic time controller. With such an arrangement,
it was found that a projection of electron density con-
taining 70 Fourier terms could be obtained in 1-13 hr.
The time taken for the same projection when calculated
with & hand computing machine and using Beevers—
Lipson strips was about one week, or using IBM
machines and punched cards, about 4 hr.

-0 -~

2 6)4f27 s o

-04
-03} 4

-025

=01

01 0'[ 2 0}’3 04

Electrons per A.?

Con:ours{ ------ Half-electron per A2 X'
-------- Special

X Boron positions
x Hydrogen positions

Fig. 4. Projection p,(z’, ¥').

be admirably satisfactory for this purpose. This scheme
is a refinement of the procedure used originally by
Bragg (1929), in which the electron density in the unit
cell is produced on to a single photographic paper by
means of successive exposures through a series of
‘% masks’. One such mask contains alternating light
and dark bands arranged so as to give a variation in
transmitted light intensity in accordance with one term
of the Fourier series, i.e. as cos 27(hx + ky). The exposure
time for a given mask is made proportional to the magni-
tude of the amplitude, | Fzo|. Thus, a single exposure
corresponds to a single term of the Fourier series. The
masks prepared by Huggins* are very conveniently
arranged in an orderly sequence on 35 mm. movie film.
The film can be run through a device which allows to
translate from one mask to the next by one motion of a

* We are gratefully indebted to Dr M. L. Huggins for pro-
viding us with a set of the masks.

About a dozen trials were necessary to obtain the first
satisfactory projection, p,(x’,%’), by the optical scheme,
using the sign information discussed in the previous
section. This projection is shown in Fig. 2, where the
boron atoms of one molecule can be seen grouped centro-
symmetrically about the center of the picture. Actually,
only eight regions of high electron density are indicated,
but two of these are much more intense (about twofold)
than the others. These two regions were each taken to
represent approximate superposition of two boron
atoms. Thus, approximate «’ and ¥’ parameters were
obtained for each of the boron atoms. These were, for
the five boron atoms of the asymmetric unit of structure
(one-half of the molecule), the following:

x’ y’
B, 0-067 0-150
By 0-208 0-054
B 0-232 0-060
By 0173 —0-087
By 0-039 ~0-084
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The intensities of the k0 reflections calculated from
" the parameters above were in sufficiently satisfactory
agreement with the observed values to imply the
validity of the projected structure and to suggest a
refinement of the parameters by the usual means of
successive computed Fourier syntheses. The final
Fourier projection for p,(=’,y) obtained by this process
is shown in Fig. 4. A noteworthy feature of this pro-
jection is that, while only a center of symmetry for the
projected structure is required by the Fourier series,
two mirror planes, perpendicular to the ', ¥’ plane, are
indicated for the molecule. They correspond closely to
the planes, ' = +4y’, and ¢’ = — 22'. While the z’ and 3’
co-ordinates of three boron atoms can be obtained
readily, those of the other two are inaccurate because of
superposition. It is seen, however, that the large peak
corresponding to the overlap of the two atoms is
elongated along one of the mirror planes (z'=44y’).
Consequently the 2’ and y’ parameters for these two
atoms were obtained from & comparison of observed and
calculated F;.,.q's. This was treated as a one-parameter
variation problem, since the two atoms were considered
displaced symmetrically about the center of the Fourier
peak along the line ' = +4y', The parameters arrived at
from the computed projection and the variation treat-
ment were:

’ 4

R Y
B; 0-067 0-157
By 0-198 0-047
B 0-238 0-057
By 0-193 —0-096
By 0-038 —0-079

The molecular configuration

The first set of approximate z parameters for boron
atoms, needed to outline the configuration of the mole-
cule, was obtained mainly as the result of a fortunate
guess for the molecular structure, which guess proved to
be essentially correct in the ultimate analysis. It was
based on considerations of expected interatomic
distances for boron atoms (approximately 1-8A.), of
symmetry, and of the intensities for 40! and Ok! reflec-
tions, as well as partial sign information. The following
z values were thus obtained:

z

B; 0

By 0-167
Buy —0-167
By 0-23

It is not possible to define uniquely the molecular
geometry with only the knowledge of the parameters
above. ¥or the disordered structure, where the asym-
metric unit is repeated four times, it is immaterial
whether any z parameter is taken positive or negative.
On the other hand, the true molecular configuration
corresponds to one of two possible pairings of the asym-
metric unit—either by a twofold axis or by an inversion
center. The former gives a ‘ cap’ model for the molecule,
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the latter a ‘crown’ arrangement of the boron atoms.
The choice could be made only from a consideration of
the ordered structure—in this case, a comparison of
observed and calculated intensities of the diffuse re-
flections. Such preliminary calculations of intensities
(for details see the section on the ordered structure)
were in satisfactory agreement with those observed for
the ‘cap model’ and in marked disagreement for the
‘ecrown model’.

Since in the disordered structure the molecule
appears reflected through a mirror plane at z2=0, it is
fortunate that the z parameters have these particular
values, i.e. with them the molecule and its reflection
coincide for four of the five boron atoms of the asym-
metric unit. Only By does not superimpose on its re-
flected image, and it alone contributes mainly to the
intensities of the diffuse reflections.

Actually, By; and By do not reflect exactly into one
another through z=0 (cf. their ', ¥’ parameters), and
their z parameters would not be expected to be the same.
Indeed, one of the main purposes of the subsequent
refinement of parameters was to obtain the exact values
for Byy and Byyg.

As a check on the approximate z parameters, calcula-
tions of F;.-and Fy,, were made and found to be in fair
agreement in magnitude with the observed quantities.
Also, the Fourier projections p.(y’,2) and p,(z’,z)
were computed and found to be compatible with the
assigned parameters. Because of the extensive over-
lapping of atoms in these projections, they were not used
for refinement of z parameters, but instead three-
dimensional syntheses were undertaken.

Three-dimensional syntheses

Better values for all boron parameters were obtained
from the following Fourier sections: p{z’,y’,0),
pla’,—2x",2z) and p(+4y',y’,z). (The last two sections
are very close to the two mirror planes of symmetry of
the molecule.) In addition, very definite indications of
hydrogen positions were given, as evidenced by
electron-density peaks of the proper magnitude. From
these three sections, five of the seven hydrogens of the
asymmetric unit were well resolved, the other two being
in doubt. The appearance of the hydrogen atoms is
shown in Fig. 5, the section p(z’,y’,0), where the four
which are attached to B; and By, and Bj and Bpy
(related by & twofold axis to B and Byy) are indicated
by the electron-density peaks which are above 0-5e,A. =3,
It will be noted that in this section there are two regions
of high electron density near the origin. These were also
interpreted at one time as possible hydrogen positions,
but shown to be spurious subsequently.

That electron-density peaks represented hydrogens
was made reasonable by a recalculation of intensities,
including parameters obtained for five hydrogens from
the Fourier maps. For at least a dozen reflections very
marked improvement in agreement was obtained by the
inclusion of the hydrogen atoms. At this stage, the other
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two hydrogen positions were guessed*—erroneously it
turned out—but their contributions to the intensities
were generally not too significant.

It seemed quite essential in this problem to explore
the electron-density distribution in the entire unit cell—
both to check on hydrogen positions and to obtain the
best parameter values for boron atoms, With regard to
the last point, in working with the disordered structure
there is the complication of overlapping atoms even in
the three-dimensional syntheses. Accordingly, there
was needed more than the usual concern with the details
of electron-density maps—peak shape and height,
magnitude of background fluctuations, etc. The three-
dimensional exploration was accomplished by comput-
ing a series of parallel sections normal to c, ie.
px',y', %), where z, wasincreased successively from 0 by
2ths or a spacing of 0-19 A. Because of symmetry, the
maximum value of z, needed was } or §5ths. In all,
eight two-dimensional Fourier syntheses were calcu-
lated. Where needed, the values of the electron density
for intermediate z’s were obtained by interpolation.

=05 o
—04F

-03F
~02

-01

b

0

——

01
02
03

04

o ! 1

-05 —-04 =03 -02 -01
—Electrons per A2
----Half-electron per A2

Fig. 5. Section p(z’, ¥, 0).

The computations were made with punched cardst
and IBM machinery, according to a scheme similar to
that described by Shaffer, Schomaker & Pauling (1946).
The intervals of 2’ and y’ were g5ths or spacings of 0-12
and 0-17 A, respectively.

Before undertaking these calculations, the observed
intensities were adjusted to a ‘more absolute’ scale by
comparison with the calculated intensities. It was
especially desirable to have true electron density repre-
sented in the Fourier plots.

The results of this investigation were very satis-
factory in most respects. That the series had reached
convergence was evidenced by the occurrence of the
boron peak maxima at the same positions as previously
determined and by no significant changes of sign upon

* One of these guesses appears in a letter to the editor of the
Journal of the American Chemical Society (Kasper, Lucht &
Harker, 1948).

T We are very grateful to Dr V. Schomaker of the California
Institute of Technology for a master set of the cards used in
these calculations.
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recalculation of F’s. The following important features
were ascertained:

Boron positions

Despite lack of great precision in some of the z para-
meters, the molecular symmetry was definitely estab-
lished as mm2. Thus, the four boron atoms B;, Bry and
B} and By (section p(z',y',0), Fig. 5) form a perfect
rectangle, though not required to do so by the Fourier
series. Boron atoms By and By lie exactly in one of the
mirror planes of the molecule and By, Byy; (also Bj;and
Biyp) in the other mirror plane. This follows from the
z' and y’ parameters which were now quite accurate for
all boron atoms.

The problem of overlapping of atoms resulting from
the fact that in the disordered structure the molecule
appears with its image reflected through the plane at
z=0, did not prove too troublesome. Thus, By and By,
which are the only two atoms that do not suffer from this
difficulty, were well resolved, round in shape and with
an electron density of 2-5e.A.3, corresponding to 1 B.
Their z parameters, therefore, could be determined
quite accurately. For By, B, Byy, Bi‘v, the overlap

Q Boron
o Hydrogen

Fig. 6. Form of the molecule of B,;H,,.

seems to be perfect, judged from the shape of the atoms
and the fact that their peak heights correspond to 5 or
almost 5e.A.-3, or 2(} B). The 2 parameter for those four
atoms could be fixed then at z=0 (z < 0-005).

On the other hand, it was not possible to obtain the
accurate values of the z parameters of By; and By from
the contour maps. This resulted from the close, but not
exact, overlap of By; with By of the ‘image’ molecule
and conversely. The centers, nonetheless, occurred on
the mirror plane of the molecule, as found previously.
Also, as before (see the projection, p,(x’,y') Fig. 4),
there was definite indication of two separate peaks
merged together. Concomitantly with this phase of the
work, calculations of intensities were made with a varia-
tion of the z parameters of By; and Byyy, both for the
sharp reflections used in the series here and for the
diffuse reflections—many of which are sensitive to these
parameters. The best values arrived at on this basis were
compatible with the density maps and are included in
the final set of parameters (below). They are probably
reliable to +0-01 in 2.

The resulting boron framework of the molecule can
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be described by saying that the boron atoms occupy ten
of the twelve vertices of a distorted icosahedron (Fig. 6).

Hydrogen positions

The results of the three-dimensional syntheses with
respect to hydrogen positions were most pleasing. It was
possible to decide, at least approximately, the location
of all 14 of them. Ten of them (Hj to Hy, H; to Hy),
located previously, may be considered as ‘regular’ and
are bonded each to a single boron atom (Hj to By, ete.)
at a distance of 1-2-1-3 A. They were somewhat better
resolved than previously and attained a peak height

THE CRYSTAL STRUCTURE OF DECABORANE, B,H,

The centers of the peaks were determined as well as
possible, but were not always used for the parameters..
Minor adjustments in their positions were made in some
cases in order to make their disposition conform to the
molecular symmetry mm2, given by the boron atoms,
but keeping the distance from the bonded boron atom
unchanged.

Background level

Aside from the peaks discussed above, the background
did not exceed 0-3e.A.~3, and only rarely became as
low as —0-3e.A.73.

+@- +@®- b
o+ o 19 Disordered crystal
12_1 . 7 Pnnm
+ +@~
o+ -0+
a’l
» Q *Q b Q Rt
\\\ " - ;- + + 1- O- %:/ +
%»O/\o\ %‘C/} ‘-f %*‘f
-q \4% - -q °* "%g; -Q . ;
A ~ P _ Twinof A
° C{O%‘ o .b > o —O/O%- ’
1. 1 ~ 1 i
Ordered *+Q| * -Q ™Y ™ Q" -Q_° hi
crystal ajo+ ©O- + alO+ -
o - +Qb b- "O\\O - b
C112/a oo 07 o [0 Ot 4 Um0
a0=2a) bi=2b} .\881+ 1 (/)] 3 (/)2_ 1{02*
‘o\ 3= S~ i+ *Q *Q 2+ _ /,%' +Q
8 ] % _ ~ S/b Twin of B
o} f}_ *\\c?g+ o b ¥e + O})%_ o~
_ I+ N O S /%“ i+ =
al b- + al + b‘

Fig. 7. Relation between disordered and ordered structures.

between0-6and 1-2e.A.~%. Theremaining four hydrogen
atoms were found to be all of the same kind, each of
them serving as an unsymmetrical bridge between two
boron atoms. Hy; bridges By and Byyy, while Hyyp is
between By and Bry. These, also, had an electron
density >0-6e.A.75.

In addition to the fourteen peaks for the hydrogen
positions, there persisted still the two of ~1e.A.~3 close
to the origin and two others of almost 0-5e.A.73,
Although all of these were in what appeared as unlikely
sites for hydrogen, their spurious nature was proven by
computing several Fourier series in which the ¥ values
used were those computed from the boron positions. Thus,
for the section p(z’,%’,0) this series, in addition to re-
producing the boron positions, gave no peaks at the
hydrogen positions, but did reproduce the two close to
the origin. The latter, then, appear to be a result of in-
completeness of the Fourier series or some similar
factor. The 14 hydrogen atoms are, then, located—at
least approximately.

Of course, the resolution of the hydrogen atoms was
not very fine, as would be expected, and it was not
possible to obtain their parameters with great precision.

The final parameters for the disordered structure are:

’

x Y zZ
By 0-070 0-157 0-000
B 0-198 0-047 0-162
Bm 0-228 0-054 —0-140
By 0-193 —0:096 0-000
By 0-039 —0-081 0-233
H; 0-122 0-276 0-000
Hy 0-304 0-066 0-322
Hin 0-378 0-090 —0-226
Hyy 0-340 —0-168 0-000
Hy 0-076 —0-156 0-385
Hyr 0-088 0-136 —0-231
Hyp 0-188 —0-070 —0-231

Space group D§2—Pnnm. All atoms in genersal positions 8 (A).

The ordered structure

Some general features of the ordered structure—
particularly its space-group derivation—have already
been outlined. We now turn to a full discussion of its
solution, although this was done concurrently with the
solution of the disordered structure.

The relation between the two is shown in Fig. 7. In
accordance with the knowledge that the space group for
the ordered crystal is C' 112/a, there are shown the two
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possible structures derivable from the disordered state.
The notation used is that of the Space Group Tables
in Internationale Tabellen... (1935, vol. 1), whereby a
circle represents a general atom position. For our case,
it is convenient also to consider it as representing the
asymmetric unit of one half the B, H,, molecule. The
difference between A4 and B is one of molecular geo-
metry—the cap model for 4, crown for B. In both cases
the crystal would be monoclinic and a monoclinic axis
is indicated in the diagram. The orthorhombic cell,
because of its relation to the small cell of the disordered
crystal (@, = 2ag, by=2b,), will be used, however. For 4,
the one which was established as correct, the sym-
metry center does not occur at the origin of the pictured
cell.

The atomic positions and structure factors in the two
cases follow:

A =Cap model (origin at center of symmetry)
Atoms at
x’y’z x’%-'_y’z %+x’y7§
Z,9,2 T, t—y,2 3—w4,z2
i"*'x’ _i_y’%—z
—%—x,é+y,%+z
?f—x: _4‘L+y’%+z
—tte -y, 5—2
where x=4x", y=3%y'+ 1, 2=2".
B=Crown model
Atoms at

x}?/:z %'*‘x:?/;z 9_6,%—?/,2

b+, 34y,2
%~w,%—y,2
%_x, %‘I'?/’%_z
—'%"'xy —i—?/,‘%‘l'z
i'*'x’ I—y.3+2
—}—a, —}+u.}-2

%'x’%’“?/:z

z,¥,2 y—x¥,2z xi+y,z }+w,ity.z
1wty bte Pratoyd+e
i+x’%_ys‘]2'—z %—x:i+y’%_z

d+o,d-y, 42
i—o ity itz
,2=2

b+ d—y b4z
%_x’%'*'ya%_z

’

where x=1{z", y=13y
For both cases, the structure-factor equations are
identical:
For A, k both even:
(1) h+k+2l=4n, A =16 cos 2nhx cos 2nky cos 2nlz,
(2) h+k+2l=4n+2,4 = —16sin2rhxsin 2mky cos 2mlz.
For A, k both odd:
(1) A+k+2l=4n, A= —16sin 27hx cos 2nky sin 27lz,
(2) h+k+2l=4n+2,A = — 16 cos 2mha sin 2ky sin 27lz.
Thus, both 4 and B give identical intensities for # and k&
both even—the ‘sharp reflections’, which were used
for the disordered structure. For » and k both odd, the
difference in calculated values results from the one-
quarter difference in y parameters.
The direct test of comparing calculated and observed
| F| values could not be made, since no crystals were
ever found in the completely ordered state. Instead, the

data available for making the distinction between A4
and B consist of the diffuse reflections for 4, £ odd, given
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by partially ordered structures. It is necessary, there-
fore, to consider the manner in which the disordering
arises,

The partially ordered crystal

Referring to the cells for the ordered structure in Fig. 7,
it can be seen that for either A4 or B there are two
arrangements of molecules, or ‘twins’, which give
identical diffraction effects. It is most convenient to
consider them in terms of the x, z planes of molecules.
For both twins, the sequence of second layers is the
same, although they differ in respect to pairing of
adjacent layers. Referring to Fig. 8, where the boron
framework of the projected molecule is outlined {cap
model), the one twin can be described as formed by the
sequence ACBD of the z, z layers, the sequence being

A C 8 D A

e T
e | I
wB | D | B
| SO

) .
2088 A.
Fig. 8. Unit cell of ordered structure illustrating arrangement

of =, z layers for one twin of cap model, A. Molecules are

outlined by projected boron positions. The edge common to

both halves of a molecule is at positive z values for a non-
shaded figure, and at negative values for a shaded one.

i

4
4

1
te

ADBC for the other. On this basis, a qualitative ex-
planation suggests itself for the experimental observa-
tions pertaining to the partially ordered state. Both the
diffuseness of only those reflections with %, k odd and the
streaking in the b* direction can be expected from a
mixing of the two sequences, subject to the condition
that an 4 or B layer is always followed by only C or D.
The situation in the actual crystals studied may be
pictured as follows:

ACBDACBD...ACBDADBCADBC.. ADBCBCAD...

A quantitative treatment of the disordering pheno-
menon similar to the methods worked out by Hendricks
& Teller (1942) for layer structures has been made. It
will not be given in detail here, since it is to be the subject
of a separate paper. It was assumed that the four layers
occur with equal frequency and that correlation exists
between neighboring layers only, corresponding to the
condition above. An expression was obtained for the
average intensity per layer in terms of a parameter
expressing the probability for any two layers occurring
as jth neighbors and serving, consequently, as a
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measure of the extent of disorder. This parameter could
be evaluated from the variation of intensity along a
streak in the b* direction. As a crude estimate, it was
found that the amount of disorder in the crystals
studied corresponded to a probability of 1/20 that a
specific layer had the same kind of layer as a second
neighbor. Also in other respects, the results of this
treatment were in agreement with the observed diffrac-
tion effects.

Intensities of the diffuse reflections

In terms of the amplitude expressions, given above,
for the ordered structure, the measured intensities of
‘diffuse reflections’ represent averaged quantities. Thus,
at the reciprocal-lattice points 2kl and k%! (h, k both odd),
the intensity is proportional to }{(F%, + Fiz). In all
cases observed the intensities were the same at each
of the points of reciprocal space corresponding to the
various planes of the same form. This is in accordance
with the assumption above that all four types of z, z
layers occur with equal frequency.

These were the quantities—3(F5,, + Fiz,)—that were
calculated and compared with the intensities in deciding
between the cap and crown models. The measured
intensity values were placed on an ‘absolute basis’ by
application of the same factors that had been used for
the sharp reflections. Although these resultant values
could be expected to be too low (in terms of electrons),
since only the maximum intensity at the reciprocal
lattice point for a diffuse streak was estimated and not
the fully integrated intensity, the observed and calcu-
lated numbers were almost on the same basis, and no
further adjustment by a scale factor was made. In
Table 11 the calculated ¢|F ;| is the averaged term,

| Frag | = {3 (Fiq+ Foe)}, for reflections with 2 and
k odd.

On the average, the magnitude of the ‘diffuse’ inten-
sities is considerably smaller than for the sharp re-
flections. Only a fraction of the total number of atoms
contributes to these intensities—three boron and five
hydrogen atoms of the asymmetric unit. The structure
factors (cf. above) contain the term sin27lz and thus
By, Byy, Hyand Hyy , for which =0, have no contribu-
tion. Also, the contributions of Byy and By generally
cancel each other to a large extent, because of the close
overlap of these atoms upon reflection through 2=0.

For high values of (sin 8)/A (> 0-5) the search for, and
intensity estimation of, the weak diffuse streaks was a
difficult and lengthy procedure. The numbers obtained,
therefore, cannot be expected to be of great precision.
Nonetheless, the agreement with calculated values for
the cap model was, on the whole, better than expected.

Fourier syntheses

To test the validity of the conclusions about the ordered
structure, more than to obtain parameter values,
Fourier syntheses were undertaken. For this, an
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assumption had to be made regarding the individual
values, Fy,, against F,;,, since only the average of their
squares was observed. Accordingly, the observed term
| Frrz|* was split into two parts, | Fp, |2 and | Fpg, |2 in
proportion to the ratio of the corresponding calculated
quantities, which also provided the proper signs.

The entire large cell was explored in the same manner
as the small cell (parallel sections, perpendicular to ¢,
spaced 0-19 A. apart). The section p(z, y,0) is, of course,
the same as for the small cell—only the #”’s for sharp
reflections enter into it. In view of the imperfect nature
of the diffuse-diffraction data, the results were satis-
factory. The separation of the molecule from its image,
which is effected only by the F’s with k,%k odd, was
accomplished, although not completely. In some cases,

Fig. 10. Section on transverse

Fig. 9. Section at z=0-1. mirror plane of molecule.

Fig. 11. Section on longitudinal mirror plane of molecule.

‘ghosts’, in positions z,¥,Z, were observed for atoms at
@, 9, 2. For example, symmetrical to By, which had a
peak electron density of ~4e.A.-3, there was a peak of
~1e.A.~% This result was not surprising. In other
respects, the structure indicated by the three-dimen-
sional syntheses conformed to that already deduced for
the ordered crystal. The boron parameters deduced
were the same as those previously used, and all hydrogen
peaks were present in the proper positions.

Views of the electron contours delineating hydrogen
atoms in the neighborhood of boron atoms are given in
Figs. 9, 10 and 11. The sections shown are for the two
mirror planes of the molecule, and also for the plane in-
cluding B;g, Bygp, By and the bridge hydrogen Hyyy.

No attempt was made to change the parameters used
for the F calculations prior to the Fourier syntheses.
They were obtained from those for the disordered
structure by the relations, z=32", y=4%y'+1, z=2".

The general positions are those given in the first part
of this section for the cap model.
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Reliability of the structure

The comparison of observed and calculated* | F |’s is
made in Tables 10 and 11. All |F|’s are included,
for both sharp and diffuse reflections. For the latter,
however, the | F'| is the averaged quantity mentioned
previously. The sharp reflections are given the indices
appropriate to the large cell. The Hartree atomic
scattering factors for boron and hydrogen, given in
Internationale Tabellen... (1935, vol.2, p. 571), were used
in the calculations. A temperature-factor correction
was applied, which on the assumption of spherical atoms
corresponds to a value for B in exp [ —-B{(sin §)/A}?] of
35A.2

It is believed that the agreement of the observed and
calculated | F'|’s is more than satisfactory. The usual
index of reliability, Z[| F |ope. — | F |cate. [/Z | F lobs, » for
all sharp reflections, was 0-19 if calculated values for
non-observed reflections were excluded and 0-25 with
their inclusion. The index for other selected groups of
reflections was:

hEO  0-22 Ol 0-25 Okl 021

with inclusion of calculated values for non-observed
reflections, These numbers compare favorably with
those obtained in many structure determinations free of
the many complications involved here. It is to be noted
that certain factors responsible for significantly lower
values of the index in other cases could not be appro-
priately ascertained for B, H,;. Undoubtedly, the

* The final calculations of F’s were made with IBM
machines by the method described by Grems & Kasper (1949).
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assumption of spherical atoms is not completely valid—
there were indications in the contour maps of preferred
directions of concentration of the electron density about
a boron peak—but it was not possible to allow for this
quantitatively. Also,there are no previousexperimental
data as to the proper scattering factors for a boron
hydride—the Hartree functions may not be the most
suitable. It must be remembered, too, that the hydrogen
share of the total number of electrons (1%) is consider-
able.

The large individual discrepancies in the | F' | values
are understandable for the most part. The first five
reflections in order of (sin@)/A were observed much
weaker than calculated. This not uncommon situation
is an indication of large extinction effects, which cannot
be readily allowed for. Attempts to obtain reliable in-
tensity data for these reflections from powder patterns
were unsuccessful. Owing to the volatility of the com-
pounds, sublimation and recrystallization could not be
prevented, even with closely packed powders in sealed-
off capillaries, and spottiness in the diffraction rings was
always obtained.

In several instances, no diffuse streak was observed
where the calculated | F'| is appreciable. This generally
applies to reflections for high (sin@)/A, and may result
from the experimental difficulties of observation dis-
cussed previously. The labor required to reinvestigate
all regions where it was difficult to ascertain the presence
of a diffuse streak, particularly those corresponding to
edges of films, seemed prohibitive.

Otherwise, the discrepancies may be ascribed to the
factors already mentioned.

Table 10. Comparison of F oy, and F o for sharp reflections

hkl FcaJc. Foha. Rkl
400 —52 39 880
800 +25 35 10.8.0
12.0.0 -7 8 12.8.0
16.0.0 -17 13 14.8.0
220 —123 54 2,100
420 +19 19 4.10.0
620 +26 29 6.10.0
820 +11 20 8.10.0
10.2.0 —37 35 10.10.0
12.2.0 - 2 <5 12.10.0
14.2.0 +24 28 14.10.0
16.2.0 — 6 4 0.12.0
040 +112 69 2.12.0
240 —20 24 4.12.0
440 —63 48 6.12.0
640 + 2 5 8.12.0
840 +31 30 10.12.0
104.0 —10 12 12.12.0
12.4.0 + 5 <b 2.14.0
14.4.0 +14 17 4.14.0
260 +31 27 6.14.0
460 —-27 32 8.14.0
660 +23 27 10.14.0
860 —-13 16 12.14.0
10.6.0 —21 25 0.16.0
12.6.0 - 4 11 2.16.0
14.6.0 -3 <5 4.16.0
080 —59 45 6.16.0
280 —34 36 8.16.0
480 —21 26 10.16.0
680 + 48 43 2.18.0

cale. Fobs, kil Fu.lc. Fobs
+ 2 <5 4.18.0 +19 25
+ 9 14 6.18.0 - 2 <9
+ 2 <5 8.18.0 + 1 <7
+11 13 10.18.0 + 2 <4
+25 34 0.20.0 —15 12
—10 12 2.20.0 - 2 <8
-1 9 4.20.0 + 6 <8
—41 38 6.20.0 - 2 <17
+17 21 8.20.0 — 4 <4
+ 4 <5 -2.22.0 - 3 <6
— 4 4 4.22.0 - 6 <5
—38 44 201 +178 46
—41 43 601 —35 31
+23 22 10.0.1 +22 29
+36 31 14.0.1 —22 26
—18 18 021 —135 69
- 2 <5 221 +10 9
—10 12 421 +44 39
+ 6 <8 621 + 28 32
+32 25 821 —14 22
- 8 10 10.2.1 +16 24
—14 14 12.2.1 + 2 6
+21 24 14.2.1 — 5 <4
+19 20 241 + 1 7
—34 28 441 —19 20
—-37 32 641 —24 28
+13 14 841 —25 29
- 3 <9 10.4.1 +23 25
—13 13 12.4.1 - 2 7
—12 17 14.4.1 -5 5
+ 14 17 061 +21 22
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Table 10 (cont.)

hkl Feae. F v Rkl Fe. Fone. 122 F g, Fos.
261 — 4 <3 14.6.2 —-10 5 6.10.3 + 8 10
461 +25 25 082 —21 24 8.10.3 0 <6
661 — 4 10 282 + 26 24 10.10.3 —10 13
861 -—10 14 482 + 16 18 12.10.3 + 5 6
10.6.1 +10 17 682 —12 12 2.12.3 +13 14
12.6.1 — 6 <5 882 + 1 <6 4.12.3 +10 5
14.6.1 -1 10 10.8.2 - 2 8 6.12.3 +11 14
281 —18 19 12.8.2 + 1 <5 8.12.3 — 6 <6
481 +17 20 14.8.2 -1 <2 10.12.3 - 6 9
681 + 2 10 2.10.2 —11 13 0.14.3 — 22 19
881 +16 16 4,10.2 —-13 12 2.14.3 - 5 <9
10.8.1 - 2 <5 6.10.2 —27 28 4.14.3 - 2 <9
12.8.1 + 1 <5 8.10.2 + 2 7 6.14.3 +10 11
14.8.1 + 6 6 10.10.2 + 8 14 8.14.3 — 4 4
0.10.1 +24 24 12.10.2 — 4 7 10.14.3 -1 <2
2.10.1 +15 18 0.12.2 +27 28 2.16.3 + 5 <9
4.10.1 —-17 18 2.12.2 + 5 <9 4,163 -7 6
6.10.1 —33 33 4,12.2 +29 25 6.16.3 — 8 3
8.10.1 + 7 <5 6.12.2 + 1 <9 8.16.3 - 4 <3
10.10.1 — 6 <5 8.12.2 + 4 7 0.18.3 —12 9
12.10.1 + 5 9 10.12.2 + 3 <4 2.18.3 + 3 <17
14.10.1 - 2 <2 12.12.2 — 8 9 4.18.3 +19 13
2,12.1 + 3 <5 2.14.2 —22 24 6.18.3 + 1 <4
4.12.1 - 17 8 4.14.2 + 8 6 2.20.3 -1 <4
6.12.1 +21 ¢ 23 6.14.2 —12 14 004 +29 29
8.12.1 +22 23 8.14.2 - 2 <5 404 +30 28
10.12.1 —18 22 10.14.2 + 2 <4 804 -1 8
12.12.1 -9 11 0.16.2 +15 17 12.0.4 + 1 8
0.14.1 + 17 8 2.16.2 —10 10 224 —20 23
2.14.1 +31 29 4.16.2 -1 <9 424 + 1 <5
4.14.1 —21 20 6.16.2 + 2 <9 624 —-11 14
6.14.1 — 6 8 8.16.2 + 5 <8 824 +15 15
8.14.1 +10 9 10.16.2 + 1 <4 10.2.4 + 3 <5
10.14.1 + 6 10 2.18.2 + 3 <9 12.2.4 — 6 7
12.14.1 + 5 <3 4,18.2 + 2 <8 044 —13 9
2.16.1 -3 <5 6.18.2 + 9 <17 244 +25 24
4.16.1 —24 27 8.18.2 — 6 <5 444 + 14 16
6.16.1 + 4 <5 0.20.2 + 3 <17 644 —21 22
8.16.1 + 4 <5 2.20.2 + 2 <17 844 - 3 7
10.16.1 -5 <4 4.20.2 -15 10 104.4 + 1 6
0.18.1 +16 14 6.20.2 + 8 <4 1244 + 5 <3
2.18.1 +14 13 2.22.2 + 2 <4 264 +15 14
4.18.1 0 <5 203 +13 14 464 —21 21
6.18.1 + 1 <5 603 + 8 13 664 — 5 <6B
8.18.1 + 3 <4 10.0.3 —18 16 864 +13 13
2.20.1 — 6 <8 14.0.3 0 <2 10.6.4 + 2 <4
4.20.1 + 2 <7 023 +14 17 084 31 25
6.20.1 -3 <6 223 —16 18 284 +34 28
0.22.1 + 1 <5 423 —20 19 484 + 2 <5
2.22.1 - 8 5 623 + 28 28 684 -3 <5
4.22,1 -1 <5 823 +16 14 884 -3 7
002 + 3 7 10.2.3 + 8 13 10.84 +14 21
402 -10 16 12.2.3 -1 <8 2.104 +11 9
802 —17 8 14.2.3 — 2 <2 4.104 —20 16
12.0.2 — 4 10 243 —19 20 6.10.4 — 4 5
222 + 9 12 443 + 6 9 8.10.4 - 2 7
422 +21 20 643 + 9 10 10.10.4 + 9 9
622 +16 20 843 —40 32 0.12.4 — 4 <9
822 +32 29 104.3 - 8 8 2.12.4 +13 6
10.2.2 + 5 6 124.3 + 9 8 4.12.4 -1 <5
12.2.2 + 2 <4 063 +49 38 6.12.4 - 3 <5
14.2.2 + 3 <3 263 —45 33 8.12.4 - 2 4
042 —52 42 463 -9 11 2.14.4 0 <8
242 +30 26 663 +29 25 4.14.4 + 6 7
442 —10 15 863 + 5 9 6.14.4 + 4 5
642 —40 35 10.6.3 + 2 <5 0.16.4 + 6 <6
842 — 4 <5 12.6.3 - 6 5 2.16.4 — 6 6
104.2 —24 24 283 —-15 15 4.16.4 —12 6
124.2 + 4 <5 483 + 27 23 205 +21 25
14.4.2 -1 <5 683 +13 16 605 — 4 9
262 +23 26 883 —20 20 025 —-22 24
462 - 5 7 10.8.3 -1 11 225 -3 <b
662 -1 <5 12.8.3 +15 19 425 -1 7
862 +36 31 0.10.3 + 8 <6 625 + 9 11

. 10.6.2 + 1 <6 2.10.3 —33 24 825 0 6
12.6.2 -1 <5 4.10.3 —16 16 245 + 1 <b
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Table 10 (cont.)
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F obs.
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3
8
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2.14.5
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426
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446
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Table 11. Comparison of Foq, and F oy for diffuse reflections
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THE CRYSTAL STRUCTURE OF DECABORANE, B,H,

Table 11 (cont.)
cate. = V& (FRer+ Fhzi)}

Rkl P Foe Rkl
1.17.3 5 <8 574
3.17.3 2 <8 774
5.17.3 2 <17 974
1.19.3 1 <6 194
3.19.3 2 <5 394

114 8 6 594
314 5 <5 794
514 2 <5 994
714 2 <5 11l4
914 4 <5 3.11.4
1114 L4 ‘<3 5.11.4
134 6 11 7.11.4
334 4 <5 9.11.4
534 2 6 1,134
734 4 <9 3.13.4
934 5 <5 5.13.4
11.3.4 4 5 7.13.4
154 4 <5 1.15.4
354 2 <5 3.15.4
554 2 <5 5.15.4
754 5 6 1.17.4
954 5 <8 115
1154 3 <3 315
174 2 <5 515
374 3 <5 715

Interatomic distances

From the final set of parameters, the following inter-
atomic distances within the decaborane molecule were
obtained:

BrBII 1-74 + 0-03A. BI—HI 1-26 A.
BI_BIII 1‘76 i 003 BII—HII ].‘29
BI_BV 1'74: i 0'02 BII].—HIII ].‘25
BII_BIII ]. '73 i 0'04 BIV—HIV 1‘29
BBy 1764008 v-Hy 128
BII—BV 18]. i 0'04

BII_B’V' 1 79 i 0:04: BI—HVI 1'34
BIII_BIV ]. 78 i 0'03 BII].—HVI 1'40
Biy-By  1-74+0:02 Bry-Hyp 134
By-By 1784002 BirHyy;y 1440
BrBiv} ,

BLB. | 201002

The limits of error are conservatively set on the basis
of the estimated uncertainties of the respective para-
meters, which are of varying degrees of reliability. It is
considerably more difficult to fix the limits of error on
hydrogen parameters, but it would appear that the
boron-hydrogen distances are probably correct to about
+0-05A.

Taking into account these distances, and referring to
Figs. 6 and 12, a better description of the molecule can
now be given, The boron framework consists of two
almost regular pentagonal pyramids sharing an edge
(By—By) with an angle of 76° between the base planes of
the pyramids (£B;~By—Biy). There are two additional
longer bonds of 2-01 A. joining the pyramids. It is not
possible to say whether the differences in the distances
within the pyramid are real. Accepting an overall

hkl F

lec. Fobs. calc. Foh&
3 <5 915 3 <3
6 5 135 4 5
5 6 335 4 <5
1 <8 535 5 <8
4 7 735 6 <6
3 <6 155 2 <5
5 <4 355 2 6
5 <3 555 5 6
3 <9 755 5 <6
5 7 175 1 <8
3 <8 375 2 <6
3 <4 575 5 <6
4 5 775 4 5
3 <9 195 4 <8
5 8 395 3 6
2 5 595 4 4
2 <3 1.11.5 5 <17
3 <17 3.11.5 4 3
4 <7 5.11.5 4 <3
1 <3 1.13.5 5 <5
3 <5 116 5 7
5 6 316 1 3
4 <6 136 4 4
5 5
7 6

average of 1-77A., one can say they are equal within
+0-04A.

The surface of the molecule consists entirely of
hydrogen atoms. The ten regular ones each joined
singly to a boron atom at distances of 1-25-1-29 A. are in
directions roughly corresponding to fivefold axes of the

7
K,
N 1-29
HI
N B" '10 oz

Fig. 12. Topological diagram with bond lengths (on left) and
bond numbers (on right).

distorted icosahedral figure suggested by the boron
atoms. The angles of these B-H bonds to adjacent B-B
bonds vary between 110 and 134°.

The bridging hydrogen atoms seem now to be in
reasonable positions, in that they complete the surface
of the molecule outlined by the other hydrogen atoms
and also make the co-ordination number of each boron 6.
That they are unsymmetrically placed with respect to
the two bonding boron atoms is not too surprising, since
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the longer leg of the bridge is to B;;1 which is bound to
two such hydrogen atoms.

The closest approach of hydrogen atoms within the
molecule is 1-98 A. The intermolecular contacts are all
through hydrogen atoms, and the shortest distances are
in the range 2-5-3-0A.

Chemical implications
Inattempting to understand the strange structure of the
molecule and the peculiar bonding within it, the most
successful interpretation has been in terms of resonating
single bonds, such as used by Pauling (1947) in de-
scribing metallic binding.

In Fig. 12 there are given (in addition to the bond
distances) bond numbers, as defined by Pauling. They
have not been derived from the equation of Pauling
relating bond number to interatomic distance, but as
follows. Each of the regular B-H’s is considered to be
a full covalent bond and hence of bond number 1. Four
boron atoms (Byr, By, By, BY) then each have five
equivalent bonds to boron, among which two electrons
are to be distributed. These bonds are consequently
assigned a bond number of 0-4. In order to keep the
valence of Byy; at three, the longer legs of the hydrogen
bridges would need to be of bond number 0-4—this in
turn makes the bond number for the shorter legs 0-6 and
for the long B-B bond 0-2. In other words, with this
assignment of bond numbers each boron is trivalent and
each hydrogen monovalent. The relation used by
Pauling is R (1)— R (r)=0-3logn, where n is the bond
number, and R (1) and R (n) are respectively the radius
for a single covalent bond and for one of bond number #.
From this relation the value of B (1) is 0-77 A, if calcu-
lated from the B-B bonds of 1-77 and 0-80 A. from the
long bond 0f 2-01 A. The value given by Pauling is0-80 A.

Acta Cryst. (1950). 3, 455
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Although this description may not be the best one, it
israther definite that the binding within the molecule is
of the ‘metallic’ type with a mobile system of electrons,
and for which the bonds have directional properties
different from those ascribed to normal covalent
linkages.

We acknowledge with pleasure the very capable
assistance in the work of Mrs J. Belanger and of Miss
M. D. Grems, and are grateful to Dr A. L. Marshall for
his enthusiastic interest in and support of this research.
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The Probability Distribution of X-ray Intensities.
IV. New Methods of Determining Crystal Classes and Space Groups

By D. RoGERs
Viriamu Jones Laboratory, University College, Cardiff, Wales

(Received 8 April 1950)

The application of the two methods of intensity statistics, the ‘distribution method’ and the ‘method
of averages’, to the identification of the symmetry elements in a crystal is discussed. It is shown
that each symmetry element has a distinet and recognizable effect on the weighted reciprocal lattice,
and it is concluded that, from X-ray intensities alone, each crystal class may theoretically be identified
uniquely. As a result 215 of the 219 space groups are also by these methods uniquely identifiable from
X-ray data. Information concerning symmetry elements may also be obtained which is of value in
structural investigations. A brief consideration is given to the remaining two pairs of space groups

1222, 12,2,2, and 123, I2,3.

1. Introduction
The recent theoretical work on X-ray intensity statistics
(Wilson, 1949, 1950) has shown that, except in certain

foreseeable cases, the distribution of the structure
amplitudes of the reflexions should conform to one or
other of two Gaussian types. When the structure
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